Nuevo reactor electrificado para obtener hidrógeno de forma más sostenible y con una pérdida de energía casi nula

Share

 

Un equipo internacional donde participa el Instituto de Tecnología Química (ITQ), centro mixto del Consejo Superior de Investigaciones Científicas (CSIC) y la Universidad Politécnica de Valencia (UPV) del que es miembro el coautor principal del trabajo, ha desarrollado un nuevo reactor electrificado para obtener hidrógeno de forma más sostenible y eficiente energéticamente.

El equipo ha combinado con éxito 36 membranas cerámicas individuales en un generador escalable y modular que produce hidrógeno a partir de electricidad y diversos combustibles, con una pérdida de energía casi nula. Es la primera vez que se demuestra que esta tecnología permite obtener hidrógeno de forma industrial, como recoge el trabajo “Single-step hydrogen production from NH3, CH4, and biogas in stacked proton ceramic reactors”, publicado en Science.

Los reactores electroquímicos cerámicos protónicos empleados en este estudio utilizan energía eléctrica para extraer hidrógeno de otras moléculas con una eficiencia energética excepcional. El combustible puede ser amoníaco, gas natural, biogás u otras moléculas con hidrógeno. El proyecto ha permitido escalar un reactor electrificado hasta alcanzar una producción de alrededor de medio kilo de hidrógeno presurizado al día mediante electrocompresión, con una muy elevada pureza y máxima eficiencia energética, por encima del 90%.

 

Los reactores electroquímicos cerámicos protónicos empleados en este estudio utilizan energía eléctrica para extraer hidrógeno de otras moléculas con una eficiencia energética excepcional.
ITQ, CSIC-UPV

ITQ, CSIC-UPV

 

El ITQ subraya como “uno de los hitos más destacables de este trabajo” que el grupo de conversión y almacenamiento de energía del insttituto ha demostrado que es posible trabajar con este tipo de tecnología a 150 bares de presión. Además, con este sistema el dióxido de carbono (CO2) que se produce en el proceso no se emite a la atmósfera, se transforma en una corriente presurizada para su licuación y transporte para su posterior utilización o almacenamiento, lo que permite la descarbonización.

 

Membranas cerámicas protónicas

“Cuando la energía se transforma de una forma a otra hay una pérdida de energía”, explica José Manuel Serra, profesor de investigación del CSIC en el ITQ y coautor principal del trabajo. “Con nuestras membranas cerámicas protónicas podemos combinar pasos distintos de la producción de hidrógeno en una sola etapa donde el calor para la producción catalítica de hidrógeno es suministrado por la separación electroquímica de gases para formar un proceso térmicamente equilibrado. El resultado es hidrógeno hecho con una pérdida de energía casi nula”, destaca.

Las membranas cerámicas protónicas son convertidores de energía electroquímica, al igual que las baterías, las pilas de combustible y los electrolizadores. Una de las claves del avance es un nuevo componente desarrollado por la compañía CoorsTek Membrane Sciences a partir de materiales vitrocerámicos y metálicos, que combina la robustez a altas temperaturas de una cerámica y la conductividad electrónica de un metal.

Estas membranas operan a temperaturas elevadas, entre 400 y 800 grados centígrados, descomponiendo el hidrógeno en sus partículas subatómicas (protones y electrones), y transportando los protones a través de un electrolito cerámico sólido. “Nuestro grupo de investigación ha realizado un extenso estudio de las velocidades de las reacciones que tienen lugar, así como de los mecanismos implicados en ellas para mejorar las condiciones de operación de estos sistemas”, comenta María I. Valls Esteve, investigadora del ITQ.

 

 

Las membranas cerámicas protónicas son convertidores de energía electroquímica, al igual que las baterías, las pilas de combustible y los electrolizadores.
Imagen: ITQ, CSIC-UPV

ITQ, CSIC-UPV

“Los resultados obtenidos en este trabajo muestran por primera vez que la tecnología cerámica protónica se puede utilizar para crear dispositivos escalables de hidrógeno que allanan el camino para la fabricación industrial en masa”, afirma el grupo de investigación. Sonia Remiro Buenamañana, investigadora postdoctoral del ITQ, añade que “este sistema permitirá almacenar energía en forma de moléculas de alta densidad energética con contenido en hidrógeno, dando respuesta al problema de la intermitencia de las fuentes renovables”.

 

Open innovation, conocimiento libre para acelerar la tecnología

El trabajo de investigación que condujo a la publicación en Science ha contado con el apoyo de expertos en tecnología y recursos financieros de las principales compañías energéticas: Shell, ExxonMobil, TotalEnergies, Equinor, Engie y Saudi Aramco. La empresa estatal noruega para la captura, almacenamiento y transporte de carbono, Gassnova, y el Consejo de Investigación de Noruega, también contribuyeron con fondos.

Además del ITQ, el equipo de investigación incluye personal científico e ingenieros de la Universidad de Oslo y el instituto de investigación SINTEF (Noruega), así como de CoorsTek Membrane Sciences, el departamento de investigación de la compañía CoorsTek.

Para la obtención de estos resultados, se ha seguido una estrategia de lo que se conoce como Open innovation, con el fin de generar conocimiento libre e impulsar la madurez de esta tecnología disruptiva. El siguiente paso en el programa de desarrollo es instalar un prototipo de generador de hidrógeno independiente en el campus de la sede de Saudi Aramco en Dhahran (Arabia Saudí).

 

Este contenido está protegido por derechos de autor y no se puede reutilizar. Si desea cooperar con nosotros y desea reutilizar parte de nuestro contenido, contacte: editors@pv-magazine.com.